3.1070 \(\int \frac{1}{(2-3 x^2)^{3/4} (4-3 x^2)} \, dx\)

Optimal. Leaf size=148 \[ \frac{\text{EllipticF}\left (\frac{1}{2} \sin ^{-1}\left (\sqrt{\frac{3}{2}} x\right ),2\right )}{2 \sqrt [4]{2} \sqrt{3}}+\frac{\tan ^{-1}\left (\frac{2^{3/4}-\sqrt [4]{2} \sqrt{2-3 x^2}}{\sqrt{3} x \sqrt [4]{2-3 x^2}}\right )}{4 \sqrt [4]{2} \sqrt{3}}-\frac{\tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt{2-3 x^2}+2^{3/4}}{\sqrt{3} x \sqrt [4]{2-3 x^2}}\right )}{4 \sqrt [4]{2} \sqrt{3}} \]

[Out]

ArcTan[(2^(3/4) - 2^(1/4)*Sqrt[2 - 3*x^2])/(Sqrt[3]*x*(2 - 3*x^2)^(1/4))]/(4*2^(1/4)*Sqrt[3]) - ArcTanh[(2^(3/
4) + 2^(1/4)*Sqrt[2 - 3*x^2])/(Sqrt[3]*x*(2 - 3*x^2)^(1/4))]/(4*2^(1/4)*Sqrt[3]) + EllipticF[ArcSin[Sqrt[3/2]*
x]/2, 2]/(2*2^(1/4)*Sqrt[3])

________________________________________________________________________________________

Rubi [A]  time = 0.0419964, antiderivative size = 148, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {400, 232, 441} \[ \frac{\tan ^{-1}\left (\frac{2^{3/4}-\sqrt [4]{2} \sqrt{2-3 x^2}}{\sqrt{3} x \sqrt [4]{2-3 x^2}}\right )}{4 \sqrt [4]{2} \sqrt{3}}-\frac{\tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt{2-3 x^2}+2^{3/4}}{\sqrt{3} x \sqrt [4]{2-3 x^2}}\right )}{4 \sqrt [4]{2} \sqrt{3}}+\frac{F\left (\left .\frac{1}{2} \sin ^{-1}\left (\sqrt{\frac{3}{2}} x\right )\right |2\right )}{2 \sqrt [4]{2} \sqrt{3}} \]

Antiderivative was successfully verified.

[In]

Int[1/((2 - 3*x^2)^(3/4)*(4 - 3*x^2)),x]

[Out]

ArcTan[(2^(3/4) - 2^(1/4)*Sqrt[2 - 3*x^2])/(Sqrt[3]*x*(2 - 3*x^2)^(1/4))]/(4*2^(1/4)*Sqrt[3]) - ArcTanh[(2^(3/
4) + 2^(1/4)*Sqrt[2 - 3*x^2])/(Sqrt[3]*x*(2 - 3*x^2)^(1/4))]/(4*2^(1/4)*Sqrt[3]) + EllipticF[ArcSin[Sqrt[3/2]*
x]/2, 2]/(2*2^(1/4)*Sqrt[3])

Rule 400

Int[1/(((a_) + (b_.)*(x_)^2)^(3/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Dist[1/c, Int[1/(a + b*x^2)^(3/4), x],
 x] - Dist[d/c, Int[x^2/((a + b*x^2)^(3/4)*(c + d*x^2)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c - 2*a*d,
0]

Rule 232

Int[((a_) + (b_.)*(x_)^2)^(-3/4), x_Symbol] :> Simp[(2*EllipticF[(1*ArcSin[Rt[-(b/a), 2]*x])/2, 2])/(a^(3/4)*R
t[-(b/a), 2]), x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b/a]

Rule 441

Int[(x_)^2/(((a_) + (b_.)*(x_)^2)^(3/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> -Simp[(b*ArcTan[(b + Rt[b^2/a, 4]
^2*Sqrt[a + b*x^2])/(Rt[b^2/a, 4]^3*x*(a + b*x^2)^(1/4))])/(a*d*Rt[b^2/a, 4]^3), x] + Simp[(b*ArcTanh[(b - Rt[
b^2/a, 4]^2*Sqrt[a + b*x^2])/(Rt[b^2/a, 4]^3*x*(a + b*x^2)^(1/4))])/(a*d*Rt[b^2/a, 4]^3), x] /; FreeQ[{a, b, c
, d}, x] && EqQ[b*c - 2*a*d, 0] && PosQ[b^2/a]

Rubi steps

\begin{align*} \int \frac{1}{\left (2-3 x^2\right )^{3/4} \left (4-3 x^2\right )} \, dx &=\frac{1}{4} \int \frac{1}{\left (2-3 x^2\right )^{3/4}} \, dx+\frac{3}{4} \int \frac{x^2}{\left (2-3 x^2\right )^{3/4} \left (4-3 x^2\right )} \, dx\\ &=\frac{\tan ^{-1}\left (\frac{2^{3/4}-\sqrt [4]{2} \sqrt{2-3 x^2}}{\sqrt{3} x \sqrt [4]{2-3 x^2}}\right )}{4 \sqrt [4]{2} \sqrt{3}}-\frac{\tanh ^{-1}\left (\frac{2^{3/4}+\sqrt [4]{2} \sqrt{2-3 x^2}}{\sqrt{3} x \sqrt [4]{2-3 x^2}}\right )}{4 \sqrt [4]{2} \sqrt{3}}+\frac{F\left (\left .\frac{1}{2} \sin ^{-1}\left (\sqrt{\frac{3}{2}} x\right )\right |2\right )}{2 \sqrt [4]{2} \sqrt{3}}\\ \end{align*}

Mathematica [C]  time = 0.0192556, size = 67, normalized size = 0.45 \[ \frac{\sqrt{x^2} \left (\Pi \left (-i;\left .-\sin ^{-1}\left (\sqrt [4]{1-\frac{3 x^2}{2}}\right )\right |-1\right )+\Pi \left (i;\left .-\sin ^{-1}\left (\sqrt [4]{1-\frac{3 x^2}{2}}\right )\right |-1\right )\right )}{2 \sqrt [4]{2} \sqrt{3} x} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((2 - 3*x^2)^(3/4)*(4 - 3*x^2)),x]

[Out]

(Sqrt[x^2]*(EllipticPi[-I, -ArcSin[(1 - (3*x^2)/2)^(1/4)], -1] + EllipticPi[I, -ArcSin[(1 - (3*x^2)/2)^(1/4)],
 -1]))/(2*2^(1/4)*Sqrt[3]*x)

________________________________________________________________________________________

Maple [F]  time = 0.045, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{-3\,{x}^{2}+4} \left ( -3\,{x}^{2}+2 \right ) ^{-{\frac{3}{4}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-3*x^2+2)^(3/4)/(-3*x^2+4),x)

[Out]

int(1/(-3*x^2+2)^(3/4)/(-3*x^2+4),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{1}{{\left (3 \, x^{2} - 4\right )}{\left (-3 \, x^{2} + 2\right )}^{\frac{3}{4}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-3*x^2+2)^(3/4)/(-3*x^2+4),x, algorithm="maxima")

[Out]

-integrate(1/((3*x^2 - 4)*(-3*x^2 + 2)^(3/4)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}}}{9 \, x^{4} - 18 \, x^{2} + 8}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-3*x^2+2)^(3/4)/(-3*x^2+4),x, algorithm="fricas")

[Out]

integral((-3*x^2 + 2)^(1/4)/(9*x^4 - 18*x^2 + 8), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int \frac{1}{3 x^{2} \left (2 - 3 x^{2}\right )^{\frac{3}{4}} - 4 \left (2 - 3 x^{2}\right )^{\frac{3}{4}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-3*x**2+2)**(3/4)/(-3*x**2+4),x)

[Out]

-Integral(1/(3*x**2*(2 - 3*x**2)**(3/4) - 4*(2 - 3*x**2)**(3/4)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int -\frac{1}{{\left (3 \, x^{2} - 4\right )}{\left (-3 \, x^{2} + 2\right )}^{\frac{3}{4}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-3*x^2+2)^(3/4)/(-3*x^2+4),x, algorithm="giac")

[Out]

integrate(-1/((3*x^2 - 4)*(-3*x^2 + 2)^(3/4)), x)